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A Simple Neurone Model
(The Perceptron)

• A perceptron has 
analogue inputs but 
binary output.

• Each input has an 
associated weight.

• Positive weights 
correspond to 
excitatory inputs and 
negative weights to 
inhibitory inputs.
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Human and Artificial Neurons
(Investigating similarities)

• The human brain most sophisticated device

• Learn from previous experience

• Great success in dealing unforeseen situations

utilising the knowledge from previous experience

• Computer technology rely entirely on human pre-

defined instructions

• Bugs may cause all sorts of unexpected results
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From Human neurons to artificial 
neurons

• We deduce essential feature and 

interconnections of human neurons

• Program a computer to simulate them

• As Knowledge is incomplete and 

computation power is limited

– Gross idealization of real neurons

DIFFERENT APPROACHES 
TO PRE-PROCESS & 

LEARNING ALGORITHM
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ANOTHER APPROACH

• A simple perceptron

– Training mode

– Testing mode

• For example, a 3-input (X1,X2 and X3) 

perceptron is taught

– Output 1 when the input is 111 or 101 &

– Output 0 when the input is 000 or 001

• Truth table can be made to see all possibilities

ANOTHER APPROACH
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INITIAL EFFORT

X1: 0 0 0 0 1 1 1 1 

X2: 0 0 1 1 0 0 1 1 

X3: 0 1 0 1 0 1 0 1 

OUT: 0 0 0/1 0/1 0/1 1 0/1 1 

• Training

– Hamming distance technique

– Generalization to ensure all possible 

patterns are responded with appropriate 

outpu

TRAINING RULE
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AFTER TRAINING
(GENERALIZATION)

X1: 0 0 0 0 1 1 1 1

X2: 0 0 1 1 0 0 1 1

X3: 0 1 0 1 0 1 0 1

OUT: 0 0 0 0/1 0/1 1 1 1

• The difference between the two truth tables 

is called the generalisation of the neuron

• The firing rule gives the neuron a sense of 

similarity and enables it to respond 'sensibly' 

to patterns not seen during training

ANOTHER APPROACH
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• Pattern recognition – an example

EXAMPLE TO SOLVE

TOP NEURON

X11: 0 0 0 0 1 1 1 1

X12: 0 0 1 1 0 0 1 1

X13: 0 1 0 1 0 1 0 1

OUT: 0 0 1 1 0 0 1 1
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MIDDLE NEURON

X21: 0 0 0 0 1 1 1 1

X22: 0 0 1 1 0 0 1 1

X23: 0 1 0 1 0 1 0 1

OUT: 1 0/1 1 0/1 0/1 0 0/1 0

BOTTOM NEURON

X21: 0 0 0 0 1 1 1 1

X22: 0 0 1 1 0 0 1 1

X23: 0 1 0 1 0 1 0 1

OUT: 1 0 1 1 0 0 1 0
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The Neuron
• The neuron is the basic information processing unit of 

an ANN. It consists of:

1 A set of links, describing the neuron inputs, with 
weights W1, W2, …, Wm

2 An adder function (linear combiner) for computing 
the weighted sum of       

the inputs (real numbers):

3 Activation function (squashing function)        for 
limiting the amplitude of the neuron output. 
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Bias of a Neuron 

• The bias b has the effect of applying an affine 
transformation to the weighted sum u

v = u + b

• v is called induced field of the neuron 

x2x1  u x1-x2=0

x1-x2= 1 

x1

x2
x1-x2= -1 
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Bias as extra input
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• The bias is an external parameter of the neuron. It can be 
modeled by adding an extra input.
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ACTIVATION FUNCTIONS

• The activation function can 
take a number of forms 
depending on the type of 
application.

• These mathematical 
alternatives approximate 
with different degrees of 
accuracy the biological 
neurone activity.
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Activation Function 

There are different activation functions used in different applications. The 
most common ones are:

Hard-limiter Piecewise linear Sigmoid Hyperbolic tangent
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Neural Networks 205

Neuron Models

• The choice of       determines the neuron model. Examples:

• step function:

• ramp function:

• sigmoid function:

with z,x,y parameters        

• Gaussian function:
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So WHAT EXPERTS DID?

• They devised ANN by deducing 
essential feature and interconnections
of human neurons

• Then Program a computer to simulate 
them

• As Knowledge is incomplete and 
computation power is limited
– We reach to Gross idealization of real 

neurons

Coming back to 
Neuron Model

We relate this to A better term PERCEPTRON
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Neural Networks NN 1 210

Perceptron

Perceptron: architecture

• We consider the architecture: feed-forward 
NN with one layer

• It is sufficient to study single layer Perceptron 
with just one neuron:
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Single layer perceptrons 

• Generalization to single layer Perceptrons with 
more neurons is easy because:

•The output units are independent among each other 
•Each weight only affects one of the outputs

Perceptron: Neuron Model
• The (McCulloch-Pitts) Perceptron is a single 

layer NN with a non-linear , the sign function
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Perceptron for Classification 

• The perceptron is used for binary classification

• Given training examples of classes C1, C2  train 

the Perceptron in such a way that it classifies 

correctly the training examples:

– If the output of the Perceptron is +1 (>0) then the input is 

assigned to class C1

– If the output  is -1 (<0)then the input is assigned to C2

Perceptron Training

• How can we train a Perceptron for a 

classification task?

• We try to find suitable values for the weights 

in such a way that the training examples are 

correctly classified

• Geometrically, we try to find a hyper-plane that 

separates the examples of the two classes
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Perceptron Geometric View
The equation below describes a (hyper-)plane in the 

input space consisting of real valued 2D vectors. The 
plane splits the input space into two regions, each of 
them describing one class.
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w1x1 + w2x2 + w0 = 0

decision
region for C1

w1x1 + w2x2 + w0 >= 0

Example: AND
• Here is a representation of the AND function

• White means false, black means true for output

• -1 means false, +1 means true for the input

-1 AND -1 = false

-1 AND +1 = false

+1 AND -1 = false

+1 AND +1 = true
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NN 1

Example: AND continued

• A linear decision surface (a plane in 3D space) 

intersecting the feature space (the 2D plane 

where z=0) separates false from true instances

Example: AND continued

• Watch a Perceptron learn the AND function:
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Example: XOR

• Here’s the XOR function:

-1 XOR -1 = false

-1 XOR +1 = true

+1 XOR -1 = true

+1 XOR +1 = false

Perceptrons cannot learn such linearly inseparable functions

Example: XOR continued

• Watch a Perceptron try to learn XOR

FAILS?
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• How to train the NEURON ?

Fixed increment learning 
algorithm

• Step 0: Initialize weight and bias.
– (For simplicity, set weight & bias to zero.)
– Set learning rate  (0 <   1). 

• (For simplicity,  can be set to 1.)

• Step 1: While stopping condition is false, 
– do steps 2- 5.

• Step 2: For each input set (training pair, input & 
target), do steps 3-4
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Continue…

• Step 3:Compute response of output unit:
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• Step 4: Update weights and bias if an error occurred 
for this pattern. 
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Continue..

• Step 5. Test the stopping condition: 
If no weights changed in step2, stop; 
else, continue. 

Perceptron: Learning Algorithm 

• Variables and parameters at iteration n 
of the learning algorithm:
x (n) =  input vector

= [+1, x1(n), x2(n), …, xm(n)]T

w(n) = weight vector
= [b(n), w1(n), w2(n), …, wm(n)]T

b(n) = bias
y(n) = actual response
d(n) = desired response

 = learning rate parameter
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The fixed-increment learning algorithm

n=1;

initialize w(n) randomly;

while (there are misclassified training examples)
Select a misclassified augmented example (x(n),d(n))

w(n+1) = w(n) + d(n)x(n);

n = n+1;

end-while;

 = learning rate parameter (real number)


