

Human and Artificial Neurons (Investigating similarities)

- The human brain →most sophisticated device
- Learn from previous experience
- Great success in dealing unforeseen situations
 utilising the knowledge from previous experience
- Computer technology rely entirely on human predefined instructions
- Bugs may cause all sorts of unexpected results

From Human neurons to artificial neurons

- We deduce essential feature and interconnections of human neurons
- Program a computer to simulate them
- As Knowledge is incomplete and computation power is limited
 - Gross idealization of real neurons

		то	ΡN	IEU	IRC	N		
X11:	0	0	0	0	1	1	1	1
X12:	0	0	1	1	0	0	1	1
X13:	0	1	0	1	0	1	0	1
OUT:	0	0	1	1	0	0	1	1

MIDDLE NEURON											
X21:	0	0	0	0	1	1	1	1			
X22:	0	0	1	1	0	0	1	1			
X23:	0	1	0	1	0	1	0	1			
OUT:	1	0/1	1	0/1	0/1	0	0/1	0			

So WHAT EXPERTS DID?

- They devised ANN by deducing essential feature and interconnections of human neurons
- Then Program a computer to simulate them
- As Knowledge is incomplete and computation power is limited
 - We reach to Gross idealization of real neurons

Perceptron for Classification

- The perceptron is used for binary classification
- Given training examples of classes C₁, C₂ train the Perceptron in such a way that it classifies correctly the training examples:
 - If the output of the Perceptron is +1 (>0) then the input is assigned to class C_1
 - If the output is -1 (<0)then the input is assigned to C_2

Example: AND continued

 A linear decision surface (a plane in 3D space) intersecting the feature space (the 2D plane where *z*=0) separates *false* from *true* instances

Fixed increment learning algorithm

- Step 0: Initialize weight and bias.
 - (For simplicity, set weight & bias to zero.)
 - Set learning rate α (0 < $\alpha \leq$ 1).
 - (For simplicity, α can be set to 1.)
- Step 1: While stopping condition is false,
 - do steps 2- 5.
- Step 2: For each input set (training pair, input & target), do steps 3-4

Continue...

• Step 3: Compute response of output unit:

$$y_{in} = b + \sum_{i} x_{i} w_{i};$$
$$y = \begin{cases} 1 & \text{if } y_{in} \ge \theta \\ -1 & \text{if } < \theta \end{cases}$$

Continue.. • Step 5. Test the stopping condition: If no weights changed in step2, stop; else, continue.

The fixed-increment learning algorithm

n=1; initialize w(n) randomly; while (there are misclassified training examples) Select a misclassified augmented example (x(n),d(n)) w(n+1) = w(n) + ηd(n)x(n); n = n+1; end-while; η = learning rate parameter (real number)