Al

TRAINING AND LOSS

* Training a model simply means
learning (determining) good values for
all the weights and the bias from labeled
examples

 In supervised learning, a machine
learning algorithm builds a model by
examining many examples and
attempting to find a model that
minimizes loss; this process is
called empirical risk minimization

TRAINING AND LOSS

» Loss is the penalty for a bad prediction.
That is, loss is a number indicating how
bad the model's prediction was on a single
example

 If the model's prediction is perfect, the
loss is zero; otherwise, the loss is greater

» The goal of training a model is to find a set
of weights and biases that have low loss,
on average, across all examples

DR IMRAN SHAFI

Al

TRAINING AND LOSS

* For example, Figure shows a high loss

model on the left and a low loss model on
the right.

w o mon

LOSS FUNCTION

A mathematical function

* A Loss function

— that would aggregate the individual losses

in a meaningful fashion.

Squared loss: a popular loss function

The linear regression models we'll examine here use a loss function called squared loss (also
known as L, loss). The squared loss for a single example is as follows:

the square of the difference between the label and the prediction
(observation - pre'::licti()n(x))2
Cyt=y)

DR IMRAN SHAFI

Al

LOSS FUNCTION

Mean square error (MSE) is the average squared loss per example over the whole dataset. To
calculate MSE, sum up all the squared losses for individual examples and then divide by the number
of examples:

1 - 2
MSE = N Z (y — prediction(z))
(zy)eD
where:

e (2, y) is an example in which

» xis the set of features (for example, chirps/minute, age, gender) that the model uses to
make predictions.

» 1 is the example's label (for example, temperature).

« prediction(x) is a function of the weights and bias in combination with the set of features
T

« D is a data set containing many labeled examples, which are (:.':, y) pairs.

¢ N is the number of examples in D.

REDUCING LOSS

Compute parameter updates ~eg—————

—
/'/ : § Y Inference: & N
o Maodel A Make Predictions (
Features _ (Prediction \ -
b Function) s /,-
{ =
N /
= (o Compute
. _—_ Loss
Label >
X /
e /

DR IMRAN SHAFI

Al

LOSS FUNCTION

Mean square error (MSE) is the average squared loss per example over the whole dataset. To
calculate MSE, sum up all the squared losses for individual examples and then divide by the number
of examples:

1 - 2
MSE = N Z (y — prediction(z))
(zy)eD
where:

e (2, y) is an example in which

» xis the set of features (for example, chirps/minute, age, gender) that the model uses to
make predictions.

» 1 is the example's label (for example, temperature).

« prediction(x) is a function of the weights and bias in combination with the set of features
T

« D is a data set containing many labeled examples, which are (:.':, y) pairs.

¢ N is the number of examples in D.

REDUCING LOSS

More substantial approach

To do this is \ "
Gradient Descent

Compute parameter updates ~eg—————

T R
- ™ Inference: P —
! (
= Model A Make Predictions
Features _ (Prediction \ -
%, Function) i /f'
\ -
~= \ o é Compute
. Loss
Label >
- J

DR IMRAN SHAFI

Al

REDUCING LOSS

» The green hand-wavy box entitled "Compute
parameter updates." the algorithmic fairy
dust can be replaced with something more

substantial

e Gradient Descent

REDUCING LOSS

>

[starting point

f\\

loss

value of weight w,

DR IMRAN SHAFI

Al

REDUCING LOSS

(negative)
gradient

A

[stafcing point L
T

loss

__ﬁ_;
next point J/
Y

-
value of weight w.

REDUCING LOSS-LEARNING RATE

« The gradient vector has both a direction and

a magnitude

« Gradient descent algorithms multiply the
gradient by a scalar known as the learning
rate (also sometimes called step size) to

determine the next point

DR IMRAN SHAFI

Al

REDUCING LOSS-LEARNING RATE

|

A Small learning rate
takes forever!
starting point
j__x
loss
Y
- >

value of weight w.

starting point

REDUCING LOSS-LEARNING RATE

A

loss

Qvershoots the
v minimum!

A
->

A

value of weight w.

DR IMRAN SHAFI

Al

REDUCING LOSS-LEARNING RATE

starting point

We'll get there

efficiently.

Y
= —
value of weight w,
Gradient Descent
D={<(111)11>I<(-11-1)11>I
<(1I-1)I_1>I<(-111)I-1>}
A ww)
? XIXIEXPY +AW,,W, '|'AW2)
v SRS “
I
m RS

DR IMRAN SHAFI

Al

TRAINING PROCEDURE

It involves three stages:
e Feed-forward of the input training pattern

e Calculation and Backpropagation of the

associated error

¢ Adjustment of the weights

Gradient Descent- ANN Training
Algorithm

Jw) . Initial ! _— Gradient

weight \ /
y
g

/ !
k/‘/ / Global cost minimum

SN w

w

Gradient descent algorithm

repeat until convergence {

)
B =0 — a——J(Bo.0)
j T

for j = 1 and j =0)

DR IMRAN SHAFI

Al

Incremental Gradient Descent

—_—

« start from an arbitrary point in the weight space

« the direction in which the error E of an example (as a
function of the weights) is decreasing most rapidly is
the opposite of the gradient of E:

— (gradient of E(w(n))) =— [jE) OFE]

.
Wi OWm

+ take a small step (of size 1) in that direction

w(n+1) =w(n)—n(gradient of E(w(n)))

Supervised Learning

» The aim is to minimize the operation error of
the network.

t+1 ¢ (A_a).
- Perceptron learning Wi T W;t¢€ (d 0) X;

rule(applicable to a single neuron)

» Back-propagation E = Zm: (d1 — 0,)2

algorithm (applicable to
feed-forward ANNSs)

DR IMRAN SHAFI

10

Al

Weights Update Rule

=
« Computation of Gradient(E):

OE(w) _ e
ow ow
=e[X']

» Delta rule (update rule) for weight update:

w(n +1) = w(n) + ne(n)x(n)

Gradient Descent

« Train w;’s such that they minimize squared error
— E[wq,.. W] = %2 Zyp (t4-04)?

Gradient:
VE[w]=[0E/ow,... OE[/owW,,]
AW=-n VE[wW]
AW;=-n OE/ow,

= -1 0fow; 1/2Z4(t4-04)?

= -1 0fow; 1/2Z 4(t4-Z; w; X;)?

= -1 Zy(tg- 04)(-X))

DR IMRAN SHAFI

11

Al

TYPES OF GRADIENT DESCENT

« Batch mode : gradient descent
w=w - 1 VEp[w] over the entire data D
Ep[w]=1/224(t4-04)°

* Incremental mode: gradient descent
w=w - 1 VE [w] over individual training examples d
Eq[w]=1/2 (t4-04)?

IGD approximate BGD arbitrarily closely if n is small

TYPES-TWO EXTREME CASES

+ Batch is the total number of examples to calculate the

gradient in a single iteration,
— The batch has been the entire data set
» At Google scale, data sets contain billions of examples &
huge # of features
— Consequently, a batch is enormous causing even a single

iteration to take a long time to compute

DR IMRAN SHAFI

12

Al

SGD AND MINI-BATCH SGD

* Redundancy becomes more likely as the

batch size grows with lesser predictive value

at the cost of smoothing out noisy gradients

The right gradient can be estimated noisily
on average for much less computation by

choosing examples at random from data set

SGD AND MINI-BATCH SGD

SGD takes this idea to the extreme--it uses
only a single example (a batch size of 1) per

iteration

Given enough iterations, SGD works but is
very noisy. The term "stochastic" indicates
that the one example comprising each batch

is chosen at random

DR IMRAN SHAFI

13

Al

SGD AND MINI-BATCH SGD

* Mini-batch SGD is a compromise between
full-batch iteration and SGD

* A mini-batch is typically between 10 and

1,000 examples, chosen at random

e Mini-batch SGD reduces the amount of noise
in SGD but is still more efficient than full-
batch

LMS learning algorithm
(gradient descent of error)
—_—

n=1;
initialize w(n) randomly;
while (E_tot unsatisfactory and n<max_iterations)

Select an example (x(n),d(n)) 1. Gradient descent refers to the method

e(n) — d(n)—w(n)T X(I”l) to hunt for the minimum-cost solution

W(I’l 4+ 1) — W(I’l) +77€(I’I)X(I’l) 2. It can use any particular cost function

3. LMS is a specialization using MSE

n=n+1;
end-while; cost function
n = learning rate parameter (real number)
A modification uses w(n+1)=w(n)+ne(n) ”xEn; ”
x(n

DR IMRAN SHAFI

14

Al

MATLAB/PYTHON VARIATIONS OF
GRADIENT DESCENT ALGORITHM

* Traingd
— Gradient descent backpropagation
— net = feedforwardnet(3,'traingd’)

The following code creates a training set of inputs p and targets t. For batch training, all the input vectors are placed in one matrix.

[-1-12 2; @5 @ 5];

p
t=[-1-111];

Create the feedforward network.
net = feedforwardnet(3, "traingd');

In this simple example, turn off a feature that is introduced |ater.

net.divideFen = '';

At this point, you might want to modify some of the default training parameters.
net.trainParam.show = 50;
net.trainParam.lr = ©.05;
net.trainParam.epochs = 388;
net.trainParam.goal = le-5;
If you want to use the default training parameters, the preceding commands are not necessary.

Now you are ready to train the network.

[net,tr] = train(net,p,t);

dX = 1r * dperf/dX

DR IMRAN SHAFI

15

Al

MATLAB/PYTHON VARIATIONS OF
GRADIENT DESCENT ALGORITHM

 traingdm

v Gradient Descent with Momentum
In addition to traingd, there are three other variations of gradient descent.

Gradient descent with momentum, implemented by traingdm, allows a network to respond not only to the local gradient, but also to recent trends in the error
surface. Acting like a lowpass filter, momentum allows the network to ignore small features in the error surface. Without momentum a network can get stuck in|
a shallow local minimum. With momentum a network can slide through such a minimum. See page 12-9 of [HDB96] for a discussion of momentum.

Gradient descent with momentum depends on two training parameters. The parameter 1r indicates the learning rate, similar to the simple gradient descent.
The parameter mc is the momentum constant that defines the amount of momentum. mc is set between 0 (no momentum) and values close to 1 (lots of
momentum). A momentum constant of 1 results in a network that is completely insensitive to the local gradient and, therefore, does not learn properly.

[-1-122;8585];
t=[-1-111];
= feedforwardnet(3, 'traingdm');
net.trainParam.lr = 0.05;
net.trainParam.mc = ©.9;
;ef :e:'(‘:;"("“’p“)‘ dX = mc*dXprev + 1r*(1-mc)*dperf/dx

where dXprev is the previous change to the weight or bias.

MATLAB/PYTHON VARIATIONS OF
GRADIENT DESCENT ALGORITHM

« traingda
— Gradient descent with adaptive learning rate
backpropagation
dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor 1r_inc. If performance increases by more than the factor|
max_perf_inc, the learning rate is adjusted by the factor 1r_dec and the change that increased the performance is not made.

DR IMRAN SHAFI

16

Al

v Gradient Descent with Adaptive Learning Rate Backpropagation

With standard steepest descent, the learning rate is held constant throughout training. The performance of the algorithm is very sensitive to the proper setting
of the learning rate. If the learning rate is set too high, the algorithm can oscillate and become unstable. If the learning rate is too small, the algorithm takes too
long to converge. It is not practical to determine the optimal setting for the learning rate before training, and, in fact, the optimal learning rate changes during
the training process, as the algorithm moves across the performance surface.

You can improve the performance of the steepest descent algorithm if you allow the learning rate to change during the training process. An adaptive learning
rate attempts to keep the learning step size as large as possible while keeping learning stable. The learning rate is made responsive to the complexity of the
local error surface.

An adaptive learning rate requires some changes in the training procedure used by traingd. First, the initial network output and error are calculated. At each
epoch new weights and biases are calculated using the current learning rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a predefined ratio, max_perf_inc (typically 1.04), the new weights and biases are
discarded. In addition, the learning rate is decreased (typically by multiplying by 1r_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is less
than the old error, the learning rate is increased (typically by multiplying by 1r_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the network can learn without large error increases. Thus, a near-optimal learning rate is
obtained for the local terrain. When a larger learning rate could result in stable learning, the learning rate is increased. When the learning rate is too high to
guarantee a decrease in error, it is decreased until stable learning resumes.

Backpropagation training with an adaptive learning rate is implemented with the function traingda, which is called just like traingd, except for the additional
training parameters max_perf_inc, 1r_dec, and 1r_inc. Here is how it is called to train the previous two-layer network:

p=[-1-122;05805];
t=[-1-111];

net = feedforwardnet(3, 'traingda');
net.trainParam.lr = 0.85;
net.trainParam.lr_inc = 1.05;

net = train(net,p,t);

y = net(p)

MATLAB/PYTHON VARIATIONS OF
GRADIENT DESCENT ALGORITHM

* traingdx
— Gradient descent with momentum and adaptive
learning rate backpropagation

dX = mc*dXprev + lr*mc*dperf/dx

where dXprev is the previous change tc the weight or bias.

DR IMRAN SHAFI

17

Al

Algorithms

The function traingdx combines adaptive learning rate with momentum training. It is invoked in the same way as traingda, except that it has the momentum
coefficient mc as an additional training parameter.

traingdx can train any network as long as its weight, net input, and transfer functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with respect to the weight and bias variables X. Each variable is adjusted according to gradient
descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning rate is increased by the factor 1r_inc. If performance increases by more than the factor
max_perf_inc, the learning rate is adjusted by the factor 1r_dec and the change that increased the performance is not made

MATLAB/PYTHON VARIATIONS OF
GRADIENT DESCENT ALGORITHM

* trainlm
— Levenberg-Marquardt backpropagation

[x, t] = bodyfat_dataset;
net = feedforwardnet(1e, 'trainlm');
net = train(net, x, t);

DR IMRAN SHAFI

18

Al

v Levenberg-Marquardt Algorithm

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was designed to approach second-order training speed without having to compute the
Hessian matrix. When the performance function has the form of a sum of squares (as is typical in training feedforward networks), then the Hessian matrix can
be approximated as

H=J (U]

and the gradient can be computed as
g=Je (2
where J is the Jacobian matrix that contains first derivatives of the network errors with respect to the weights and biases, and e is a vector of network errors.

The Jacobian matrix can be computed through a standard backpropagation technique (see [HaMe94]) that is much less complex than computing the Hessian
matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the following Newton-like update:
5 1
Xert =% — [JTT+ 0] JTe

When the scalar uis zero, this is just Newton's method, using the approximate Hessian matrix. When u is large, this becomes gradient descent with a small step
size. Newton's method is faster and more accurate near an error minimum, so the aim is to shift toward Newton's method as quickly as possible. Thus, p is

decreased after each successful step (reduction in performance function) and is increased only when a tentative step would increase the performance u

function. In this way, the performance function is always reduced at each iteration of the algorithm.

B ofy (%)

= dfx) _ |ofx) I | _ 6}:1 afu

dx ax, d

of,(x)
ox 1

DR IMRAN SHAFI

19

Al

f
dxy Oz,

2f
Oxs 0z,

82 f

Oz2

[Bf 0 f
Ot Oz Oz
Pf f
) = Oxo 01 dx3
»’f *f
| Oz, Ox1 Oz, Oxa
That is, the entry of the ith row and the jth column is
& f
H:); = 2
(f) v a:rz a:[:j

DR IMRAN SHAFI

20

